Analysis of Obsidian from Moho Cay, Belize: New Evidence on Classic Maya Trade Routes

Paul F. Healy, Heather I. McKillop, and Bernie Walsh

Copyright © 1984 by the American Association for the Advancement of Science
Analysis of Obsidian from Moho Cay, Belize:
New Evidence on Classic Maya Trade Routes

Abstract. Trace element analysis of obsidian artifacts from Moho Cay, Belize, reveals that the obsidian derives primarily from the El Chayal outcrop in highland Guatemala and not from the Ixtepeque source. This is contrary to the widely accepted obsidian trade route model for Classic Maya civilization and suggests that Classic Maya obsidian trade was a more complex economic phenomenon than has been recognized.

More than a decade ago Hammond proposed a trade model to explain the distribution of obsidian artifacts at Classic Maya centers in the lowlands (1). Trace element analysis by x-ray fluorescence (XRF) and neutron activation (NAA) revealed a heavy reliance on two primary sources of obsidian—at El Chayal and Ixtepeque—during the Classic Period (A.D. 250 to 900). Both are located in the volcanic highlands of Guatemala, which is a considerable distance from the lowland Maya centers of obsidian use in Guatemala, Belize, and Mexico (Fig. 1). From analyses of obsidians from 23 lowland Maya sites, Hammond proposed that the movement of the valued volcanic stone most likely followed trade routes along major river valleys: (i) from El Chayal to the Maya interior lowlands by the Usamacinta and Sarstoon basins and (ii) from Ixtepeque, down the Moto- gua River to the Caribbean, and thence up the Belize-Mexico Yucatán coast.

The distribution of obsidian from the two sources appeared to be largely complementary, overlapping at or near Tikal in the central Maya lowlands. This suggested to Hammond that the two highland sources were being exploited contemporaneously during the Classic Period and that there was a level of competition between them for the lowland Maya market.

The validity of the two-pronged trade route has been questioned as the sources of more samples of obsidian have been identified. Some samples from the western lowland site of Seibal, for example, proved to have been derived from El Chayal, as predicted by the trade model, but others were from Ixtepeque and two other sources (2). Johnson raised additional queries after determining the sources of samples from Palenque and surrounding sites (3). As was the case at Seibal, most of the obsidian was derived from El Chayal, but there were specimens from Ixtepeque, San Martín Jilotepeque, Pachuca, and possibly Zaragosa. The distribution of obsidian in the western Maya lowlands did not convincingly support the trade model.

Some sources of Guatemalan obsidian appear to have been used more heavily at different times (4), indicating that obsidian from Classic Period deposits should be selected to analyze Classic Period obsidian trade routes. Hammond refined his model with data on obsidian from several sites located in southern Belize (5). The Classic Maya center of Lubaantun, for example, located but 25 km from the coast on several waterways, had no Ixtepeque obsidian at all (6). Islands off the southern coast of Belize received Ixtepeque obsidian, as predicted by the original model, but also El Chayal obsidian.

In reexamining the trade model, Hammond (5) suggested that during the Classic Period there were several transshipment points on a coastal Yucatán trade route between such major ports as Cozumel and Nito; there were "way stations where large trading canoes would put in
Table 1. Results of x-ray fluorescence analysis of obsidian samples from Middle Classic Period (A.D. 400 to 700) deposits at Moho Cay, Belize.

<table>
<thead>
<tr>
<th>Catalog number</th>
<th>Unit</th>
<th>Depth</th>
<th>Context</th>
<th>Ba (ppm)</th>
<th>Fe (%)</th>
<th>Zr (ppm)</th>
<th>Sr/Zr</th>
<th>Rb/Zr</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/193-1-53</td>
<td>1</td>
<td>40-50 cm</td>
<td>Domestic refuse</td>
<td>1044</td>
<td>0.86</td>
<td>168</td>
<td>0.887</td>
<td>0.547</td>
<td>Ixtepeque</td>
</tr>
<tr>
<td>37/193-1-106</td>
<td>2a</td>
<td>50-70 cm</td>
<td>Feature 4 burial</td>
<td>799</td>
<td>0.63</td>
<td>115</td>
<td>1.365</td>
<td>1.359</td>
<td>El Chayal*</td>
</tr>
<tr>
<td>37/193-1-158</td>
<td>2a</td>
<td>50-70 cm</td>
<td>Feature 4 burial</td>
<td>810</td>
<td>0.63</td>
<td>108</td>
<td>1.395</td>
<td>1.440</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-158</td>
<td>2a</td>
<td>50-70 cm</td>
<td>Feature 4 burial</td>
<td>877</td>
<td>0.66</td>
<td>113</td>
<td>1.376</td>
<td>1.395</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-13</td>
<td>4</td>
<td>10-20 cm</td>
<td>Domestic refuse</td>
<td>881</td>
<td>0.63</td>
<td>114</td>
<td>1.394</td>
<td>1.391</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-19</td>
<td>4</td>
<td>20-30 cm</td>
<td>Domestic refuse</td>
<td>925</td>
<td>0.59</td>
<td>116</td>
<td>1.319</td>
<td>1.355</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-42</td>
<td>5a and 5b</td>
<td>20-30 cm</td>
<td>Feature 1 burial</td>
<td>889</td>
<td>0.57</td>
<td>118</td>
<td>1.299</td>
<td>1.294</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-20</td>
<td>6</td>
<td>10-20 cm</td>
<td>Feature 7 manatee midden</td>
<td>899</td>
<td>0.57</td>
<td>111</td>
<td>1.345</td>
<td>1.346</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-170</td>
<td>6 and 6a</td>
<td>21.5 cm</td>
<td>Feature 7 manatee midden</td>
<td>916</td>
<td>0.63</td>
<td>117</td>
<td>1.341</td>
<td>1.334</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-104</td>
<td>8a</td>
<td>27-34 cm</td>
<td>Feature 5 burial fill</td>
<td>914</td>
<td>0.69</td>
<td>115</td>
<td>1.333</td>
<td>1.311</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-104</td>
<td>8a</td>
<td>27-34 cm</td>
<td>Feature 5 burial fill</td>
<td>889</td>
<td>0.62</td>
<td>116</td>
<td>1.345</td>
<td>1.335</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-113</td>
<td>18</td>
<td>40-50 cm</td>
<td>Domestic refuse</td>
<td>916</td>
<td>0.68</td>
<td>119</td>
<td>1.410</td>
<td>1.407</td>
<td>El Chayal*</td>
</tr>
<tr>
<td>37/193-1-113</td>
<td>18</td>
<td>40-50 cm</td>
<td>Domestic refuse</td>
<td>922</td>
<td>0.59</td>
<td>114</td>
<td>1.354</td>
<td>1.315</td>
<td>El Chayal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>El Chayal reference</td>
<td>915</td>
<td>0.627</td>
<td>117</td>
<td>1.31</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ixtepeque reference</td>
<td>1030</td>
<td>0.923</td>
<td>176</td>
<td>0.90</td>
<td>0.57</td>
<td></td>
</tr>
</tbody>
</table>

*Samples that were checked further by NAA (Table 2).

to off-load and take on goods from the mainland; such stations would habitually be on small islands off the coast, and from their small size and unsuitability for settlement on any substantial scale might well have functioned as de facto ports-of-trade. . . . One site specifically designated as a "way station" was Moho Cay, near Belize City. Excavations at this site, however, raise some concerns about the utility of the current Maya obsidian trade model (7).

Moho Cay, a small flat island near the mouth of the Belize River (Fig. 1), measured 250 by 320 m in 1980. Only a small area of the northern point was dry and grass-covered in 1979; the rest of the island lay in mangrove. Archeological remains are known to have been eroding from the site since the 19th century and have been recovered from underwater survey around the site (8, 9). Gann reported on large quantities of manatee bone on the cay (10). For years the island had been looted and was generally identified as a prehistoric fishing station (11). Although there were no mounds or other structures, abundant sherds, chert, and obsidian were found on the northern point of the cay in 1978 and 1979 (9, 12). The island site was effectively destroyed in 1980 by a dredging operation to create a commercial marina (13).

Data from excavated remains as well as substantial surface collections indicate that the principal Maya use of the cay was during the Middle Classic (A.D. 400 to 700) (9, 14). Late Preclassic and Late Postclassic material from the surface collections point to use of the island at these times as well.

That Moho Cay served as a trade "node" for prehistoric Maya traders, as suggested by Hammond, seems likely.

Fig. 1. Map of the Maya subarea indicating the location of Moho Cay (Belize) and possible obsidian trade routes. Major obsidian sources in the Guatemalan highlands are Ixtepeque, El Chayal, and San Martin Jilotepeque [after Hammond (22)].
Table 2. Results of an abbreviated neutron activation analysis of obsidian samples from deposits at Moho Cay, Belize.

<table>
<thead>
<tr>
<th>Catalog number</th>
<th>Dy (ppm)</th>
<th>Mn (ppm)</th>
<th>Na (%)</th>
<th>K (%)</th>
<th>Ba (ppm)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>37/193-1-53</td>
<td>2.73 ± 0.11</td>
<td>656 ± 13</td>
<td>3.28 ± 0.07</td>
<td>3.44 ± 0.18</td>
<td>912 ± 44</td>
<td>El Chayal</td>
</tr>
<tr>
<td>37/193-1-113</td>
<td>2.66 ± 0.12</td>
<td>660 ± 13</td>
<td>3.26 ± 0.07</td>
<td>3.74 ± 0.18</td>
<td>973 ± 43</td>
<td>El Chayal</td>
</tr>
<tr>
<td>El Chayal reference</td>
<td>2.66 ± 0.11</td>
<td>649 ± 13</td>
<td>3.15 ± 0.06</td>
<td>3.46 ± 0.25</td>
<td>915 ± 35</td>
<td>El Chayal</td>
</tr>
<tr>
<td>Ixtepeque reference</td>
<td>2.30 ± 0.11</td>
<td>449 ± 9</td>
<td>3.05 ± 0.05</td>
<td>3.61 ± 0.26</td>
<td>1030 ± 27</td>
<td>Ixtepeque</td>
</tr>
</tbody>
</table>

First, the cay is ideally suited for such a function: near the mouth of the Belize River, one of the most important rivers flowing from the interior of the central Maya lowlands. Furthermore, the cay is also at the juncture of this river and the proposed coastal canoe route along the Yucatán Peninsula, making it perfectly situated to facilitate shipment of trade goods destined for the interior from coastal ports to the north or south and vice versa.

Second, the nonlocal origin of a large proportion of the artifacts from Moho Cay also indicates that the island community had an important role in Classic Maya trade. The large quantity of polychrome ceramics was undoubtedly imported; utilitarian ceramics for domestic use were also found (9). The highly distinctive Teotihuacan-style slab-footed cylinder vessels are probably exotic imports (15). Although no chert outcrops occur on the cay, chert implements were unusually abundant (9, 16). The numerous complete artifacts and small quantity of chert waste material indicate that the artifacts were manufactured on the mainland, with only some finishing and re-touching at Moho Cay. A remarkable amount of chert tool manufacturing is documented for the northern Belize site of Colha (17), and some at other sites in northern Belize, an area with extensive outcrops of quality chert (18).

Obsidian was also abundant, both from surface collections and excavations at Moho Cay. Since the source of obsidian can be traced, 13 obsidian samples, representing 10 percent of the excavated obsidian, were selected for analysis on the basis of secure provenience and dating. The samples, derived from ten different excavations dating to the Middle Classic Period (A.D. 400 to 700), were gray prismatic blades and were analyzed by nondestructive XRF and NAA (Table 1) (19, 20). The relative abundance of the trace elements Ba, Fe, Sr, Rb, and Zr is particularly useful as a comparative index for obsidian samples from well known geological sources in Mexico, Guatemala, El Salvador, and Honduras. In two cases, the XRF identifications were checked by a more complex, short neutron activation method that focused on the elements Dy, Mn,Na,K, and Ba (Table 2).

Twelve of the 13 samples were identified as originating at the El Chayal source of highland Guatemala, and one was from Ixtepeque.

The most commonly accepted model (1) for Classic Maya obsidian trade projects that... Ixtepeque obsidian was taken down the Río Motagua and north up the Caribbean coast and then brought inland, upriver or on overland routes." El Chayal obsidian is overwhelmingly dominant at Moho Cay, whereas the model proposes that Ixtepeque sourcing would predominate at such a coastal site.

Moho Cay trace element analysis suggests that prehistoric Maya obsidian trade mechanisms, trading dynamics, and commodity distribution were more intricate than the dual route, interior-coastal model. Demand for obsidian during the Classic Period was very high, and it is likely that there was no monopoly on the sources or their routings. The growing body of evidence suggests, instead, that both El Chayal and Ixtepeque, as well as other highland sources, were being exploited and that obsidian was being traded throughout the lowlands by multiple routes (4, 19, 20).

The high percentage of El Chayal obsidian in the Classic Period sample from Moho Cay supports the interpretation that El Chayal was a major obsidian source for coastal as well as interior Classic Maya lowland sites. El Chayal obsidian may have reached coastal communities by interior and coastal transportation routes. Certainly canoe transport along the Motagua and Caribbean would have been the most direct way for both El Chayal and Ixtepeque obsidian. The high proportion of El Chayal obsidian at Moho Cay, and indeed at other Classic Period coastal settlements in Belize, reinforces the interpretation that El Chayal obsidian may have been transported from Guatemala down the Motagua River and north along the Caribbean coast. Some El Chayal obsidian may have been transported by way of the Guatemalan Alta Verapaz highland region to the southern coast of Belize by an interior or route that may also have been used to transport cacao (5, 21). This El Chayal obsidian could then have been transported by canoe up the Yucatán coast to offshore islands such as Moho Cay. Alternatively, El Chayal obsidian transported by an interior route to Tikal in the Guatemalan Peten may have been carried overland to the Belize River for transport by canoe to the coast (22). Certainly, the source of the Classic Period obsidian that has been analyzed from Tikal has been largely El Chayal (23), as has the source of samples from Barton Ramie in the Belize Valley (24).

The predominance at Moho Cay of obsidian from the Guatemalan highland source of El Chayal during the Middle Classic is counter to the model for Classic Maya obsidian trade that projects that Maya sites along the east coast of Belize and Mexico would most likely have been served by Ixtepeque. It appears, instead, that Classic Maya obsidian procurement and distribution were more complex and that the patterns of trade in the Classic Period can only be adequately assessed by reference to temporally specific samples with a more in depth consideration of the socioeconomic nature of this trade (4).

PAUL F. HEALY
Department of Anthropology,
Trent University, Peterborough,
Ontario K9J 7B8 Canada

HEATHER I. MCKILLOP
Northeastern Archaeological Associates, P.O. Box 493,
Port Hope, Ontario L1A 3Z4 Canada

BERNIE WALSH
Department of Anthropology,
Trent University

References and Notes
5. N. Hammond, in Maya Lithic Studies, T. R. Hester and N. Hammond, Eds. (Spec. Rep. 4, Center for Archaeological Research, University of Texas, San Antonio, 1976), pp. 71-81; F. H. Stross et al., Archaeometry 26, 89 (1976). It should be noted that two obsidian pieces from another Moho Cay (Toledo District) in Belize were included in these studies, and these should not be confused with the samples and island under discussion.
15. R. E. Smith, *Ceramic Sequence at Uaxactun* (Publ. 20, Middle American Research Institute, New Orleans, 1955), vol. 2, figure 6, i-p.
16. R. Wilk, unpublished paper, on file with the Department of Archaeology, Government of Belize, Belmopan, Belize.
25. The excavations at Moho Cay were conducted under licence 79-2 to P. F. H. from the Ministry of Trade and Industry and the Department of Archaeology, Government of Belize. We thank E. Graham, former Archaeological Commissioner of Belize, and other members of the Belize Department of Archaeology for assistance and the staff of St. John’s College in Belize City. We thank F. Asaro, H. Michel, and F. Stross of Lawrence Berkeley Laboratory for NAA and XRF analyses. Special thanks also go to R. B. Johnston, T. R. Hester, G. R. Willey, and J. Awe for their helpful comments. Funds for the 1978 survey and 1979 excavations were granted by the Trent Research Committee, the Dean of Arts and Science (Trent), and the SSHRC (grant 410-78-0373); funds for obsidian analyses were derived from a grant by the Trent Committee on Aid to the Sciences.

13 January 1984; accepted 23 February 1984